Citas
Adedinsewo, D. A., Pollak, A. W., Phillips, S. D., Smith, T. L., Svatikova, A., Hayes, S. N., Mulvagh, S. L., Norris, C., Roger, V. L., Noseworthy, P. A., Yao, X., & Carter, R. E. (2022). Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools. Circulation Research, 130(4), 673-690. https://doi.org/10.1161/CIRCRESAHA.121.319876
https://doi.org/10.1161/CIRCRESAHA.121.319876
Al Hamid, A., Beckett, R., Wilson, M., Jalal, Z., Cheema, E., Al-Jumeily Obe, D., Coombs, T., Ralebitso-Senior, K., & Assi, S. (2024). Gender Bias in Diagnosis, Prevention, and Treatment of Cardiovascular Diseases: A Systematic Review. Cureus. https://doi.org/10.7759/cureus.54264
https://doi.org/10.7759/cureus.54264
Bentley, A. R., Callier, S., & Rotimi, C. N. (2017). Diversity and inclusion in genomic research: Why the uneven progress? Journal of Community Genetics, 8(4), 255-266. https://doi.org/10.1007/s12687-017-0316-6
https://doi.org/10.1007/s12687-017-0316-6
Berthelot, A., Caron, E., Jay, M., & Lefèvre, L. (2024). Estimating the environmental impact of Generative-AI services using an LCA-based methodology. Procedia CIRP, 122, 707-712. https://doi.org/10.1016/j.procir.2024.01.098
https://doi.org/10.1016/j.procir.2024.01.098
Cho, M. K., & Martinez-Martin, N. (2022). Epistemic Rights and Responsibilities of Digital Simulacra for Biomedicine. The American Journal of Bioethics, 23(9), 43-54. https://doi.org/10.1080/15265161.2022.2146785
https://doi.org/10.1080/15265161.2022.2146785
Crawford, K. (2021). The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press. https://doi.org/10.2307/j.ctv1ghv45t
https://doi.org/10.2307/j.ctv1ghv45t
European Union. (2024, junio 13). Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act) (Text with EEA relevance). http://data.europa.eu/eli/reg/2024/1689/oj/eng
Gasbarrino, K., Di Iorio, D., & Daskalopoulou, S. S. (2022). Importance of sex and gender in ischaemic stroke and carotid atherosclerotic disease. European Heart Journal, 43(6), 460-473. https://doi.org/10.1093/eurheartj/ehab756
https://doi.org/10.1093/eurheartj/ehab756
Hong, C., Pencina, M. J., Wojdyla, D. M., Hall, J. L., Judd, S. E., Cary, M., Engelhard, M. M., Berchuck, S., Xian, Y., D'Agostino, R., Howard, G., Kissela, B., & Henao, R. (2023). Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups. JAMA, 329(4), 306. https://doi.org/10.1001/jama.2022.24683
https://doi.org/10.1001/jama.2022.24683
Ipp, E., Liljenquist, D., Bode, B., Shah, V. N., Silverstein, S., Regillo, C. D., Lim, J. I., Sadda, S., Domalpally, A., Gray, G., Bhaskaranand, M., Ramachandra, C., Solanki, K., EyeArt Study Group, DuBiner, H. B., Genter, P., Graham, J., Johnson, A., Levy-Clarke, G., … Gornbein, J. (2021). Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. JAMA Network Open, 4(11), e2134254. https://doi.org/10.1001/jamanetworkopen.2021.34254
https://doi.org/10.1001/jamanetworkopen.2021.34254
Krämer, W. (2014). Kahneman, D. (2011): Thinking, Fast and Slow. Statistical Papers, 55(3), 915-915. https://doi.org/10.1007/s00362-013-0533-y
https://doi.org/10.1007/s00362-013-0533-y
Madhusoodanan, J. (2020). Health-care inequality could deepen with precision oncology. Nature, 585(7826), S13-S13.
https://doi.org/10.1038/d41586-020-02678-7
Moylan, C. A., Brady, C. W., Johnson, J. L., Smith, A. D., Tuttle-Newhall, J. E., & Muir, A. J. (2008). Disparities in Liver Transplantation Before and After Introduction of the MELD Score. JAMA, 300(20), 2371-2378. https://doi.org/10.1001/jama.2008.720
https://doi.org/10.1001/jama.2008.720
OECD. (2024). AI, data governance and privacy: Synergies and areas of international co-operation (OECD Artificial Intelligence Papers 22; OECD Artificial Intelligence Papers, Vol. 22). https://doi.org/10.1787/2476b1a4-en
https://doi.org/10.1787/2476b1a4-en
Pathologynews. (2023, febrero 23). FDA Has Now Cleared More Than 500 Healthcare AI Algorithms, Four Of Which Are For Pathology - Pathology News. https://www.pathologynews.com/computational-pathology-ai/fda-has-now-cleared-more-than-500-healthcare-ai-algorithms-four-of-which-are-for-pathology/
Pesheva, E. (2021, septiembre 16). Precision-Driven Health Equity | Harvard Medical School. https://hms.harvard.edu/news/precision-driven-health-equity
Pinto-Bustamante, B. J., Riaño-Moreno, J. C., Clavijo-Montoya, H. A., Cárdenas-Galindo, M. A., & Campos-Figueredo, W. D. (2023). Corrigendum: Bioethics and artificial intelligence: between deliberation on values and rational choice theory. Frontiers in Robotics and AI, 10, 1251568. https://doi.org/10.3389/frobt.2023.1251568
https://doi.org/10.3389/frobt.2023.1251568
Price, W. N., Gerke, S., & Cohen, I. G. (2019). Potential Liability for Physicians Using Artificial Intelligence. JAMA, 322(18), 1765. https://doi.org/10.1001/jama.2019.15064
https://doi.org/10.1001/jama.2019.15064
Rodríguez-Perálvarez, M. L., Gómez-Orellana, A. M., Majumdar, A., Bailey, M., McCaughan, G. W., Gow, P., Guerrero, M., Taylor, R., Guijo-Rubio, D., Hervás-Martínez, C., & Tsochatzis, E. A. (2023). Development and validation of the Gender-Equity Model for Liver Allocation (GEMA) to prioritise candidates for liver transplantation: A cohort study. The Lancet Gastroenterology & Hepatology, 8(3), 242-252. https://doi.org/10.1016/S2468-1253(22)00354-5
https://doi.org/10.1016/S2468-1253(22)00354-5
Shafi, S., & Parwani, A. V. (2023). Artificial intelligence in diagnostic pathology. Diagnostic Pathology, 18(1), 109. https://doi.org/10.1186/s13000-023-01375-z
https://doi.org/10.1186/s13000-023-01375-z
Sjoding, M. W., Dickson, R. P., Iwashyna, T. J., Gay, S. E., & Valley, T. S. (2020). Racial Bias in Pulse Oximetry Measurement. New England Journal of Medicine, 383(25), 2477-2478. https://doi.org/10.1056/NEJMc2029240
https://doi.org/10.1056/NEJMc2029240
Smith, H., Birchley, G., & Ives, J. (2024). Artificial intelligence in clinical decision‐making: Rethinking personal moral responsibility. Bioethics, 38(1), 78-86. https://doi.org/10.1111/bioe.13222
https://doi.org/10.1111/bioe.13222
Sprockel Díaz, J. J. (2020). Inteligencia artificial en medicina: Conceptos fundamentales y áreas de aplicación. Bogotá: Fundación Universitaria Ciencias de la Salud (FUCS).
Suran, M., & Hswen, Y. (2024). How to Navigate the Pitfalls of AI Hype in Health Care. JAMA, 331(4), 273. https://doi.org/10.1001/jama.2023.23330
https://doi.org/10.1001/jama.2023.23330
United Nations System. (2024, abril 16). United Nations System White Paper on AI Governance: An analysis of the UN system's institutional models, functions, and existing international normative frameworks applicable to AI governance. High-Level Committee on Programmes (HLCP), Inter-Agency Working Group on Artificial Intelligence (IAWG-AI). https://unsceb.org/sites/default/files/2024-04/United%20Nations%20System%20White%20Paper%20on%20AI%20Governance.pdf
Véliz, C. (2021). Privacy is Power: Why and How You Should Take Back Control of Your Data.
Vincent, J. (2020, junio 23). What a machine learning tool that turns Obama white can (and can't) tell us about AI bias. The Verge. https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
Voelker, R. (2018). Diagnosing Fractures With AI. JAMA, 320(1), 23. https://doi.org/10.1001/jama.2018.8565
https://doi.org/10.1001/jama.2018.8565
Wang, L., Zhang, Y., Wang, D., Tong, X., Liu, T., Zhang, S., Huang, J., Zhang, L., Chen, L., Fan, H., & Clarke, M. (2021). Artificial Intelligence for COVID-19: A Systematic Review. Frontiers in Medicine, 8, 704256. https://doi.org/10.3389/fmed.2021.704256
https://doi.org/10.3389/fmed.2021.704256
Yu, K. H., Healey, E., Leong, T. Y., Kohane, I. S., & Manrai, A. K. (2024). Medical Artificial Intelligence and Human Values. The New England journal of medicine, 390(20), 1895-1904. https://doi.org/10.1056/NEJMra2214183