Efecto neuroprotector de la Fluoxetina en un modelo experimental de isquemia cerebral en ratones
PDF

Palabras clave

Fluoxetina
Isquemia cerebral
Ratones
Agentes neuroprotectores
Regeneración nerviosa
Plasticidad neuronal
Trastornos psicomotores Fluoxetine
Brain ischemia
Mice
Neuroprotective agents
Nerve regeneration
Neuronal plasticity
Psychomotor disorders

Cómo citar

Londoño, A. C., & Arango Dávila, C. A. (2011). Efecto neuroprotector de la Fluoxetina en un modelo experimental de isquemia cerebral en ratones. Revista Médica Sanitas, 14(4), 30-38. Recuperado a partir de //revistas.unisanitas.edu.co/index.php/rms/article/view/350

Resumen

Introducción: la fluoxetina es un fármaco de amplio uso en la población para el tratamiento de los trastornos del estado de ánimo. Su uso ha demostrado efectos directos en los procesos de plasticidad neuronal y aumento de la proliferación neuronal. Objetivo: evaluar el efecto de la fluoxetina sobre el compromiso neurológico y el volumen de la lesión en un modelo de isquemia cerebral focal. Diseño: se utilizaron 28 ratones distribuidos en cuatro grupos experimentales: fluoxetina y placebo con y sin lesión isquémica. Se administró fluoxetina vía intraperitoneal a una dosis de 20 mg/kg/día, una vez al día durante 21 días. La técnica de isquemia cerebral focal consiste en introducir por vía cervical a través de la arteria carótida interna un nylon monofilamento recubierto con poli-l-lisina que ocluye el origen de la arteria cerebral media, el nylon se retira del lecho arterial a los 30 minutos, lo que permite la reperfusión vascular. Los animales fueron evaluados a las 24 horas postisquemia utilizando la escala modificada de Bederson y el análisis del test conductual de campo abierto. Después de esto se determinó el volumen de tejido cerebral infartado utilizando el método 2,3,5-Triphenyltetrazolium chloride. Resultados: los ratones tratados con fluoxetina, a quienes se les realizó el procedimiento de isquemia-reperfusión cerebral, presentaron menor déficit neurológico (p=0.0001) y menor porcentaje de lesión (p=0.003), lo que se correlacionó significativamente con una mejoría en su trastorno motor. Conclusión: la fluoxetina parece tener un efecto neuroprotector en la isquemia cerebral en ratones. Este hallazgo estimula a continuar estudiando su papel en futuros ensayos preclínicos y clínicos en pacientes con accidente cerebro vascular.

PDF

Citas

Kasner E, Saver J, Levine S. High lights from the 25th Annual International Stroke Conference. 2000; 10-12.

Brodaty H, Altendorf A, Withall A, Sachdev PS. Mortality and Institutionalization in Early Survivors of Stroke: The Effects of Cognition, Vascular Mild Cognitive Impairment, and Vascular Dementia. J Stroke Cerebrovasc Dis. 2010; 19):485-493. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.09.006

Hong KS, Saver JL. Years of disability-adjusted life gained as a result of thrombolytic therapy for acute ischemic stroke. Stroke. 2010; 41:471-477. https://doi.org/10.1161/STROKEAHA.109.571083

World Health Organization. Task Force on Stroke preventions and other Cerebrovascular Disorders: recommendation on stroke preventions, diagnosis and therapy. Stroke. 1989; 20: 1407-1431. https://doi.org/10.1161/01.STR.20.10.1407

Ratan RR. Beyond Neuroprotection to Brain Repair: Exploring the Next Frontier in Clinical Neuroscience to Expand the Therapeutic Window for Stroke. Transl Stroke Res. 2010; 1:71-73. https://doi.org/10.1007/s12975-010-0024-6

Singh A, Black SE, Herrmann N, Leibovitch FS, Ebert PL, Lawrence J, Szalai JP. Functional and neuroanatomic correlations in poststroke depression: the Sunnybrook Stroke Study. Stroke. 2000; 31: 637- 644. https://doi.org/10.1161/01.STR.31.3.637

Arango CA, Pimienta HJ, Escobar M. Depresión postisquemia cerebral: aproximación clínica y fisiopatológica. Revista Colombiana de Psiquiatría. 2000; 4: 321-344.

Paolucci S, Antonucci G, Grasso MG, Morelli D, Troisi E, Coiro P, De Angelis D, Rizzi F, Bragoni M. Poststroke depression, antidepressant treatment and rehabilitation results. A case-control study. Cerebrovasc Dis .2001; 12: 264- 271. https://doi.org/10.1159/000047714

Gillen R, Tennen H, McKee TE., Gernert-Dott P, Affleck G. Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Arch Phys Med Rehabil. 2001; 82: 1645- 1649. https://doi.org/10.1053/apmr.2001.26249

Robinson RG. Poststroke depression: prevalence, diagnosis, treatment, and disease progression. Biol Psychiatry. 2003; 54: 376-387. https://doi.org/10.1016/S0006-3223(03)00423-2

Gupta A, Pansari K, Shetty H. Post-stroke depression. Int J Clin Pract. 2002; 56: 531- 537.

Lee HJ, Kim JW, Yim SV, Kim MJ, Kim SA, Kim YJ, Kim CJ, Chung JH. Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry. 2001; 610: 725-728. https://doi.org/10.1038/sj.mp.4000947

Wright SC, Zhong J, Larrick JW. Inhibition of apoptosis as a mechanism of tumor promotion. FASEB J. 1994; 8: 654- 660. https://doi.org/10.1096/fasebj.8.9.8005393

Peer D, Dekel Y, Melikhov D, Margalit R. Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res. 2004; 64: 7562-7569. https://doi.org/10.1158/0008-5472.CAN-03-4046

Longa EZ, Wenstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20: 84-91. https://doi.org/10.1161/01.STR.20.1.84

Belayev L, Busto R, Zhao W, Fernandez G, Ginsberg MD. Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: neurological and histological validation. Brain Res. 1999; 833:181-190. https://doi.org/10.1016/S0006-8993(99)01528-0

Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986; 17: 472-476. https://doi.org/10.1161/01.STR.17.3.472

Yrjänheikki J, Koistinaho J, Kettunen M, Kauppinen RA, Appel K, Hüll M, Fiebich BL. Long-term protective effect of atorvastatin in permanent focal cerebral ischemia. Brain Research. 2005; 1052: 174-179. https://doi.org/10.1016/j.brainres.2005.06.004

Wahl F, Allix M, Plotkine M, Boulu RG. Neurological and Behavioral Outcomes of Focal Cerebral Ischemia in Rats. Stroke. 1992; 23: 267-272. https://doi.org/10.1161/01.STR.23.2.267

Yang Y, Shuaib A, Li Q. Quantification of infarct size on focal cerebral ischemia model of rats using a simple and economical method. Journal of Neuroscience Methods. 1998; 84: 9-16. https://doi.org/10.1016/S0165-0270(98)00067-3

Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with Image J. Biophotonics International. 2004; 11: 36-42.

Roulston CL, Callaway JK, Jarrott B, Woodman OL, Dusting GJ. Using behavior to predict stroke severity in conscious rats: post-stroke treatment with 3', 4'-dihydroxyflavonol improves recovery. Eur J Pharmacol. 2008; 584:100-10. https://doi.org/10.1016/j.ejphar.2008.01.046

Pariente J, Loubinoux I, Carel C, Albucher JF, Leger A, Manelfe C, Rascol O, Chollet F. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol. 2001; 50: 718- 729. https://doi.org/10.1002/ana.1257

Haynes LE, Barber D, Mitchell IJ. Chronic antidepressant medication attenuates dexamethasone-induced neuronal death and sublethal neuronal damage in the hippocampus and striatum. Brain Res. 2004; 1026: 157-167. https://doi.org/10.1016/j.brainres.2004.05.117

Cavus I, Duman RS. Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biol Psychiatry. 2003; 54: 59-69. https://doi.org/10.1016/S0006-3223(03)00236-1

Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997; 54: 597-606. https://doi.org/10.1001/archpsyc.1997.01830190015002

Duman RS. Novel therapeutic approaches beyond the serotonin receptor. Biol Psychiatry. 1998; 44: 324-335. https://doi.org/10.1016/S0006-3223(98)00031-6

Jin Y, Lim CM, Kim SW, Park JY, Seo JS, Han PL, Yoon SH, Lee JY. Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain Research. 2009; 1281:108-116. https://doi.org/10.1016/j.brainres.2009.04.053

Kim DH, Li H, Yoo HL, Lee BH, Hwang IK, Won MH. Effects of fluoxetine on ischemic cells and expressions in BDNF and some antioxidants in the gerbil hippocampal CA1 region induced by transient ischemia. Experimental Neurology. 2007; 204: 748-758. https://doi.org/10.1016/j.expneurol.2007.01.008

Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry. 2000; 5: 262-269. https://doi.org/10.1038/sj.mp.4000712

Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000; 20: 9104 - 9110. https://doi.org/10.1523/JNEUROSCI.20-24-09104.2000

Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Dumn R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003; 301:805-809. https://doi.org/10.1126/science.1083328

Lim CM, Kim SW, Park JY, Kim C, Yoon SH, Lee JK. Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect. J Neurosci Res. 2009; 87:1037-1045. https://doi.org/10.1002/jnr.21899

Ng SC, de la Monte SM, Conboy GL, Karns LR, Fishman MC. Cloning of human GAP-43: growth association and ischemic resurgence. Neuron. 1988; 1:133-139. https://doi.org/10.1016/0896-6273(88)90197-3

Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995; 26: 2135-2144. https://doi.org/10.1161/01.STR.26.11.2135

Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001; 8: 910-922. https://doi.org/10.1006/nbdi.2001.0425

Chen J, Shen C, Meller E. 5-HT1A receptor-mediated regulation of mitogen-activated protein kinase phosphorylation in rat brain. Eur J Pharmacol. 2002; 452:155-162. https://doi.org/10.1016/S0014-2999(02)02297-5

Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ. Extensive cortical rewiring after brain injury. J Neurosci. 2005; 25: 10167-10179. https://doi.org/10.1523/JNEUROSCI.3256-05.2005

Rola R, Mizumatsu S, Otsuka S, Morhardt DR. NobleHaeusslein LJ, Fishman K, Potts MB, Fike JR. Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Experimental Neurology. 2006; 202: 189-199. https://doi.org/10.1016/j.expneurol.2006.05.034

Descargas

Los datos de descargas todavía no están disponibles.