Los peroxisomas y su importancia biomédica: Un tema mal entendido y muy mistificado
PDF (Español (España))

How to Cite

García Morán, G. A. (2009). Los peroxisomas y su importancia biomédica: Un tema mal entendido y muy mistificado. Revista Médica Sanitas, 12(2), 30-40. Retrieved from //revistas.unisanitas.edu.co/index.php/rms/article/view/131

Abstract

Los peroxisomas son organelos membranosos subcelulares misteriosos. Hasta ahora se han identificado 50 enzimas peroxisomales, las cuales contribuyen a varios procesos metabólicos cruciales, tales como el metabolismo de lípidos y la detoxificación del peróxido de hidrógeno. En el mundo médico, los facultativos están desinformados o no tienen información de las características clínicas resultantes de los desórdenes genéticos originados en esta estructura. Esta revisión se dirige a los recientes descubrimientos sobre la biogénesis, formación, función y degradación de los peroxisomas.

PDF (Español (España))

References

Titorenko VI, Rachubinski RA. The peroxisome: or chestrating important developmental decisions from inside the cell. J Cell Biol 2004;164:641-5. https://doi.org/10.1083/jcb.200312081

Schrader M, fahimi HD. The peroxisome: still a mysterious organelle. Histochem Cell Biol 2008; 129:421-40. https://doi.org/10.1007/s00418-008-0396-9

Latruffe n, Vamecq J. Evolutionary aspects of peroxisomes as cell organelles, and of genes encoding peroxisomal proteins. Biol Cell 2000; 92:389-95. https://doi.org/10.1016/S0248-4900(00)01083-2

Kutschera u, niklas KJ. Endosymbiosis, cell evolution, and speciation. Theory Biosci 2005;124: 1-24. https://doi.org/10.1016/j.thbio.2005.04.001

Poole AM, Penny D. Evaluating hypotheses for the origin of eukaryotes. Bioessays 2007;29: 74-84. https://doi.org/10.1002/bies.20516

Michels PA, Moyersoen J, Krazy H et al. Peroxisomes, glyoxysomes and glycosomes (review). Mol Membr Biol 2005;22:133-45. https://doi.org/10.1080/09687860400024186

Reumann S, Weber AP. Plant peroxisomes respire in the light: some gaps of the photorespiratory c2 cycle have become filled--others remain. Biochim Biophys Acta 2006;1763:1496-510. https://doi.org/10.1016/j.bbamcr.2006.09.008

Moyersoen J, choe J, fan E et al. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2004;28:603-43. https://doi.org/10.1016/j.femsre.2004.06.004

Waller Rf, Mcconville MJ, Mcfadden GI. More plastids in human parasites? Trends Parasitol 2004;20:54-7. https://doi.org/10.1016/j.pt.2003.10.018

Spröte P, Brakhage AA, Hynes MJ. contribution of peroxisomes to penicillin biosynthesis in Aspergillus nidulans. Eukaryot Cell 2009;8: 421-3. https://doi.org/10.1128/EC.00374-08

fahimi HD, Baumgart E. current cytochemical techniques for the investigation of peroxisomes. A review. J Histochem Cytochem 1999;47: 121932. https://doi.org/10.1177/002215549904701001

fujiki y, okumoto K, otera H et al. Peroxisome biogenesis and molecular defects in peroxisome assembly disorders. Cell Biochem Biophys 2000; 32 Spring:155-64. https://doi.org/10.1385/CBB:32:1-3:155

Titorenko VI, Rachubinski RA. The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2001;2:357-68. https://doi.org/10.1038/35073063

Tabak Hf, Murk JL, Braakman I et al. Peroxisomes start their life in the endoplasmic reticulum. Traffic 2003;4:512-8. https://doi.org/10.1034/j.1600-0854.2003.00110.x

Purdue PE, Lazarow PB. Peroxisome biogenesis. Annu Rev Cell Dev Biol 2001;17:701-52. https://doi.org/10.1146/annurev.cellbio.17.1.701

Schekman R. Peroxisomes: another branch of the secretory pathway? Cell 2005;122:1-2. https://doi.org/10.1016/j.cell.2005.06.033

yan M, Rayapuram n, Subramani S. The control of peroxisome number and size during division and proliferation. Curr Opin Cell Biol 2005;17:376-83. https://doi.org/10.1016/j.ceb.2005.06.003

fagarasanu A, fagarasanu M, Rachubinski RA. Maintaining peroxisome populations: a story of division and inheritance. Annu Rev Cell Dev Biol 2007;23:321-44. https://doi.org/10.1146/annurev.cellbio.23.090506.123456

Dunn WA Jr, cregg JM, Kiel JA et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy 2005;1:75-83. https://doi.org/10.4161/auto.1.2.1737

Taylor SW, fahy E, Ghosh SS. Global organellar proteomics. Trends Biotechnol 2003;21:82-8. https://doi.org/10.1016/S0167-7799(02)00037-9

Saleem RA, Smith JJ, Aitchison JD. Proteomics of the peroxisome. Biochim Biophys Acta 2006;1763:1541-51. https://doi.org/10.1016/j.bbamcr.2006.09.005

Distel B, Braakman I, Elgersma y et al. Transactions at the peroxisomal membrane. Subcell Biochem 2000;34:303-22. https://doi.org/10.1007/0-306-46824-7_8

Hettema EH, Tabak Hf. Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta 2000;1486:18-27. https://doi.org/10.1016/S1388-1981(00)00045-7

Antonenkov VD, Hiltunen JK. Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 2006;1763:1697-706. https://doi.org/10.1016/j.bbamcr.2006.08.044

Wanders RJ, Visser Wf, van Roermund cW et al. The peroxisomal ABc transporter family. Pflugers Arch 2007;453:719-34.

https://doi.org/10.1007/s00424-006-0142-x

Smith MD, Schnell DJ. Peroxisomal protein import. the paradigm shifts. Cell 2001;105:293-6. https://doi.org/10.1016/S0092-8674(01)00337-3

Gould SJ, collins cS. opinion: 30. Van Ael E, fransen M. Targeting signals in peroxisomal membrane proteins. Biochim Biophys Acta 2006;1763:1629-38. https://doi.org/10.1016/j.bbamcr.2006.08.020

Steinberg SJ, Dodt G, Raymond GV et al. Peroxisome biogenesis disorders. Biochim Biophys Acta 2006;1763:1733-48.

https://doi.org/10.1016/j.bbamcr.2006.09.010

Rhodin J. correlation of ultrastructural organization and function in normal experimentally changed convoluted tubule cells of the mouse kidney. Ph.D. thesis. Stockholm, Aktiebolaget Godvil. 1954.

Rhodin J. Electron microscopy of the kidney. Am J Med 1958;24:661-75. https://doi.org/10.1016/0002-9343(58)90373-5

Rhodin J. Electron microscopy of the kidney. Brux Med 1959;39:409-26.

Baudhuin P, Beaufay H, Rahman-Li y et al. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotrans ferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J 1964;92:179-84. https://doi.org/10.1042/bj0920179

Beaufay H, Jacques P, Baudhuin P et al. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J 1964;92:184-205. https://doi.org/10.1042/bj0920184

De Duve c. Principles of tissue fractionation. J Theor Biol 1964;6:33-59. https://doi.org/10.1016/0022-5193(64)90065-7

Baudhuin P, Beaufay H, De Duve c. combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomesor in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol 1965;26:219-43. https://doi.org/10.1083/jcb.26.1.219

De Duve c. The separation and characterization of subcellular particles. Harvey Lect 1965;59:49-87.

De Duve C, Baudhuin P. Peroxisomes (microbodiesand related particles). Physiol Rev 1966;46: 323-57. https://doi.org/10.1152/physrev.1966.46.2.323

De Duve C. Evolution of the peroxisome. Ann N YAcad Sci 1969;168:369-81. https://doi.org/10.1111/j.1749-6632.1969.tb43124.x

De Duve C. The peroxisome: a new cytoplasmic organelle.Proc R Soc Lond B Biol Sci 1969;173:71-83. https://doi.org/10.1098/rspb.1969.0039

Leighton F, Poole B, Lazarow PB, et al. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol 1969;41:521-35. https://doi.org/10.1083/jcb.41.2.521

Poole B, Leighton F, De Duve C. The synthesis and turnover of rat liver peroxisomes. II. Turnover of peroxisome proteins. J Cell Biol 1969;41:536-46. https://doi.org/10.1083/jcb.41.2.536

N obel Prize [base de datos en Internet]. Estocolmo: The Nobel Foundation; 1995-[fecha de acceso 20 de abril del 2009]. Disponible en: http://nobelprize.org/nobel_prizes/

Dansen TB, Wirtz KW. The peroxisome in oxidative stress. IUBMB Life 2001;51:223-30. https://doi.org/10.1080/152165401753311762

Schrader M, Fahimi HD. Peroxisomes and oxidative stress. Biochim Biophys Acta 2006;1763: 1755-66. https://doi.org/10.1016/j.bbamcr.2006.09.006

PubMed [base de datos en Internet]. Bethesda: National Library of Medicine; 1966-[fecha de acceso 20 de abril del 2009]. Disponible en: http://www.ncbi.nlm.nih.gov/PubMed/

EMBASE [base de datos en Internet]. Holanda: Excerpta Medica-Elsevier; 1974-[fecha de acceso 20 de abril del 2009]. Disponible en: http://www.embase.com

O MIM [base de datos en Internet]. Baltimore: Johns Hopkins University; 1966- [fecha de acceso 20 de abril del 2009]. Disponible en: http://www.ncbi.nlm.nih.gov/entrez/dispomim

HUGO [base de datos en Internet]. Bethesda: National Library of Medicine and others(exp.: Celera Genomics and the Sanger Center); 1989- [fecha de acceso 20 de abril del 2009]. Disponible en: http://www.hugo-international. org/index.html

Wanders RJ, Jansen GA, Skjeldal OH. Refsumdisease, peroxisomes and phytanic acid oxidation: a review. J Neuropathol Exp Neurol 2001; 60:1021-31. https://doi.org/10.1093/jnen/60.11.1021

Wierzbicki AS, Lloyd MD, Schofield CJ et al. Refsum's disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J Neurochem 2002;80:727-35. https://doi.org/10.1046/j.0022-3042.2002.00766.x

Wanders RJ, Komen JC. Peroxisomes, Refsum's disease and the alpha-and omega-oxidation of phytanic acid. Biochem Soc Trans 2007;35 (Pt 5):865-9. https://doi.org/10.1042/BST0350865

Wierzbicki AS. Peroxisomal disorders affecting phytanic acid alpha-oxidation: a review. Biochem Soc Trans 2007;35(Pt 5):881-6. https://doi.org/10.1042/BST0350881

C layton PT. Clinical consequences of defects in peroxisomal beta-oxidation. Biochem Soc Trans 2001;29(Pt 2):298-305. https://doi.org/10.1042/bst0290298

Poirier y, Antonenkov VD, Glumoff T et al. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions Biochim Biophys Acta 2006;1763:1413-26. https://doi.org/10.1016/j.bbamcr.2006.08.034

Hashimoto T. Peroxisomal beta-oxidation enzymes. Cell Biochem Biophys. 2000;32 Spring: 63-72. https://doi.org/10.1385/CBB:32:1-3:63

Wanders RJ. Peroxisomes, lipid metabolism, and human disease. Cell Biochem Biophys 2000;32 Spring:89-106. https://doi.org/10.1385/CBB:32:1-3:89

Hunt Mc, Alexson SE. novel functions of acylcoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism. Prog Lipid Res 2008;47:405-21. https://doi.org/10.1016/j.plipres.2008.05.001

Brosius u, Gärtner J. cellular and molecular aspects of Zellweger syndrome and other peroxisome biogenesis disorders. Cell Mol Life Sci 2002;59:1058-69. https://doi.org/10.1007/s00018-002-8486-7

Jiménez-Sánchez G, Silva-Zolezzi I. Bases bioquímicas y fisiopatológicas de las Enfermedades Peroxisomales. Mensaje Bioquímico (UNAM) 2003; 27: 1-23.

Mandel H, Korman SH. Phenotypic variability (heterogeneity) of peroxisomal disorders. Adv Exp Med Biol 2003;544:9-30. https://doi.org/10.1007/978-1-4419-9072-3_2

Wanders RJ, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 2005;67:10733. https://doi.org/10.1111/j.1399-0004.2004.00329.x

Gressens P. Pathogenesis of migration disorders. Curr Opin Neurol 2006;19:135-40. https://doi.org/10.1097/01.wco.0000218228.73678.e1

Wanders RJ, Waterham HR. Biochemistry of ma-mmalian peroxisomes revisited. Annu Rev Biochem 2006;75:295-332. https://doi.org/10.1146/annurev.biochem.74.082803.133329

Wanders RJ, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 2006;1763:1707-20. https://doi.org/10.1016/j.bbamcr.2006.08.010

Shimozawa n. Molecular and clinical aspects of peroxisomal diseases. J Inherit Metab Dis 2007; 30:193-7. https://doi.org/10.1007/s10545-007-0516-z

fuchs SA, Berger R, Klomp LW et al. D-amino acids in the central nervous system in health and disease. Mol Genet Metab 2005;85:168-80. https://doi.org/10.1016/j.ymgme.2005.03.003

Kawazoe T, Park HK, Iwana S et al. Human Damino acid oxidase: an update and review. Chem Rec 2007;7:305-15. https://doi.org/10.1002/tcr.20129

Pollegioni L, Piubelli L, Sacchi S et al. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 2007;64:1373-94. https://doi.org/10.1007/s00018-007-6558-4

Seiler n. catabolism of polyamines. Amino Acids 2004;26:217-33. https://doi.org/10.1007/s00726-004-0070-z

Brosche T, Platt D. The biological significance of plasmalogens in defense against oxidative damage. Exp Gerontol 1998;33:363-9. https://doi.org/10.1016/S0531-5565(98)00014-X

Lee Tc. Biosynthesis and possible biological functions of plasmalogens. Biochim Biophys Acta 1998; 1394:129-45. https://doi.org/10.1016/S0005-2760(98)00107-6

farooqui AA, Horrocks LA. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 2001;7:232-45. https://doi.org/10.1177/107385840100700308

farooqui AA, Horrocks LA. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001;16:263-72. https://doi.org/10.1385/JMN:16:2-3:263

Murphy Rc. free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem Res Toxicol 2001;14:463-72.

nagan n, Zoeller RA. Plasmalogens: biosynthesis and functions. Prog Lipid Res 2001;40:199-229. https://doi.org/10.1016/S0163-7827(01)00003-0

Brites P, Waterham HR, Wanders RJ. functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 2004;1636:219-31. https://doi.org/10.1016/j.bbalip.2003.12.010

youssef J, Badr M. Biology of senescent liver peroxisomes: role in hepatocellular aging and disease. Environ Health Perspect 1999;107:791-7. https://doi.org/10.1289/ehp.99107791

clarke cJ, Haselden Jn. Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicol Pathol 2008;36:140-7. https://doi.org/10.1177/0192623307310947

Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res2009;33:191-205. https://doi.org/10.1111/j.1530-0277.2008.00827.x

Ryan JG, Kastner DL. fevers, genes, and inna2009;33:191-205.

Touitou I, Koné-Paut I. Autoinflammatory disea 85. yao Q, furst DE. Autoinflammatory diseases: an ses. Best Pract Res Clin Rheumatol 2008;22:81129. https://doi.org/10.1016/j.berh.2008.08.009

yao Q, furst DE. Autoinflammatory diseases: an update of clinical and genetic aspects. Rheumatology (Oxford) 2008;47:946-51. https://doi.org/10.1093/rheumatology/ken118

Aubourg P. x-linked adrenoleukodystrophy. Ann Endocrinol (Paris) 2007;68:403-11. https://doi.org/10.1016/j.ando.2007.04.002

Kemp S, Wanders RJ. x-linked adrenoleukodystrophy: very long-chain fatty acid metabolism, ABc half-transporters and the complicated route to treatment. Mol Genet Metab 2007;90:268-76. https://doi.org/10.1016/j.ymgme.2006.10.001

ferraz-de-Souza B, Achermann Jc. Disorders of adrenal development. Endocr Dev 2008;13:1932. https://doi.org/10.1159/000134753

ferdinandusse S, Houten SM. Peroxisomes and bile acid biosynthesis. Biochim Biophys Acta 2006; 1763:1427-40. https://doi.org/10.1016/j.bbamcr.2006.09.001

ferdinandusse S, Denis S, faust PL et al. Bile acids: Role of peroxisomes. J Lipid Res. 2009 Apr 8. [Epub ahead of print] https://doi.org/10.1194/jlr.R900009-JLR200

Danpure cJ, Rumsby G. Molecular aetiology of primary hyperoxaluria and its implications for clinical management. Expert Rev Mol Med 2004;6:1-16. https://doi.org/10.1017/S1462399404007203

Danpure cJ. Primary hyperoxaluria type 1: AGT mistargeting highlights the fundamental differences between the peroxisomal and mitochondrial protein import pathways. Biochim Biophys Acta 2006;1763:1776-84. https://doi.org/10.1016/j.bbamcr.2006.08.021

ogata M, Wang DH, ogino K. Mammalian acatalasemia: the perspectives of bioinformatics and genetic toxicology. Acta Med Okayama 2008;62:34561.

Périchon R, Bourre JM, Kelly Jf et al. The role of peroxisomes in aging. Cell Mol Life Sci 1998;54:64152. https://doi.org/10.1007/s000180050192

Terlecky SR, Koepke JI, Walton PA. Peroxisomes and aging. Biochim Biophys Acta 2006;1763:174954. https://doi.org/10.1016/j.bbamcr.2006.08.017

Hayashi S, fujiwara S, noguchi T. Evolution of urate-degrading enzymes in animal peroxisomes. Cell Biochem Biophys 2000;32 Spring:123-9. https://doi.org/10.1385/CBB:32:1-3:123

Storey KB. Mammalian hibernation. Transcriptional and translational controls. Adv Exp Med Biol 2003; 543:21-38. https://doi.org/10.1007/978-1-4419-8997-0_3

francis GA, fayard E, Picard f et al. nuclear receptors and the control of metabolism. Annu Rev Physiol 2003;65:261-311. https://doi.org/10.1146/annurev.physiol.65.092101.142528

Latruffe n, nicolas-francès V, clemencet Mc et al. Gene regulation of peroxisomal enzymes by nutrients, hormones and nuclear signalling factors in animal and human species. Adv Exp Med Biol 2003;544:225-36. https://doi.org/10.1007/978-1-4419-9072-3_28

Latruffe n, Vamecq J, cherkaoui Malki M. Geneticdependency of peroxisomal cell functions - emerging aspects. J Cell Mol Med 2003;7:238-48. https://doi.org/10.1111/j.1582-4934.2003.tb00224.x

Michalik L, Auwerx J, Berger JP et al. International union of Pharmacology. LxI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006;58:726-41. https://doi.org/10.1124/pr.58.4.5

Semple RK, chatterjee VK, o'Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest 2006;116:581-9. https://doi.org/10.1172/JCI28003

Erol A. The functions of PPARs in Aging and Longevity. PPAR Res 2007;2007:39654. https://doi.org/10.1155/2007/39654

Kuusisto J, Andrulionyte L, Laakso M. Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep 2007;9:274-80. https://doi.org/10.1007/s11883-007-0033-4

Bragt Mc, Popeijus HE. Peroxisome proliferatoractivated receptors and the metabolic syndrome. Physiol Behav 2008;94:187-97. https://doi.org/10.1016/j.physbeh.2007.11.053

chung JH, Seo Ay, chung SW et al. Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 2008;7:126-36. https://doi.org/10.1016/j.arr.2008.01.001

Itoh T, yamamoto K. Peroxisome proliferator activated receptor gamma and oxidized docosahexaenoic acids as new class of ligand. naunyn Schmiedebergs Arch Pharmacol 2008;377:541-7. https://doi.org/10.1007/s00210-007-0251-x

Suga T. Hepatocarcinogenesis by peroxisome proliferators. J Toxicol Sci 2004;29:1-12. https://doi.org/10.2131/jts.29.1

youssef JA, Badr MZ. Aging and enhanced hepatocarcinogenicity by peroxisome proliferatoractivated receptor alpha agonists. Ageing Res Rev 2005;4:103-18 update of clinical and genetic aspects. Rheumatology (Oxford) 2008;47:946-51. https://doi.org/10.1016/j.arr.2004.10.002

Downloads

Download data is not yet available.