Abstract
Defining a gene, a matter of interest of many disciplines, is a difficult and increasingly complicated task. Some authors think it should reflect a global concept that includes most of the structural and functional elements that compose it. In this paper, we analyze the findings that have helped to build a new concept of the gene, focusing on recent discoveries that have forced us to change the traditional definition of gene, summarized as “AND A sequence that encodes information for the synthesis of proteins or RNA”. Among these findings are alternative splicing, somatic recombination of immunoglobulin genes, regulation of gene expression at inter or intra-chromosomal levels, regulation by regulators sequences, epigenetic mechanisms or RNA; the sense and nature of transcripts, quimerism transcript, exon repetition and extragenomic inheritance. Taking into account these findings and their functional impacts we can define genes as a set of nucleic acids sequences that determine the regulation and expression of an inheritable feature.
References
Pearson, H., Genetics: what is a gene? Nature, 2006. 441(7092): p. 398-401. https://doi.org/10.1038/441398a
Pennisi, E., Searching for the genome's second code. Science, 2004. 306(5696): p. 632-5. https://doi.org/10.1126/science.306.5696.632
Paweletz, N., Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol, 2001. 2(1): p. 72-5. https://doi.org/10.1038/35048077
Snyder, M. and M. Gerstein, Genomics. Defining genes in the genomics era. Science, 2003. 300(5617): p. 258-60. https://doi.org/10.1126/science.1084354
Hozumi, N. and S. Tonegawa, Evidence for somatic rearrangement of immuno-globulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A, 1976. 73(10): p. 3628-32. https://doi.org/10.1073/pnas.73.10.3628
Roberts, R.J., Intervening sequences excised in vitro. Nature, 1978. 274(5671): p. 530. https://doi.org/10.1038/274530a0
Modrek, B. and C. Lee, A genomic view of alternative splicing. Nat Genet, 2002. 30(1): p. 13-9. https://doi.org/10.1038/ng0102-13
Johnson, J.M., et al., Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003. 302(5653): p. 2141-4. https://doi.org/10.1126/science.1090100
Wang, E.T., et al., Alternative isoform regulation in human tissue transcriptomes. Nature, 2008. 456(7221): p. 470-6. https://doi.org/10.1038/nature07509
Barash, Y., et al., Deciphering the splicing code. Nature, 2010. 465(7294): p. 53-9. https://doi.org/10.1038/nature09000
Shepard, P.J. and K.J. Hertel, Conserved RNA secondary structures promote alternative splicing. Rna, 2008. 14(8): p. 1463-9. https://doi.org/10.1261/rna.1069408
Nurtdinov, R.N., et al., Low conservation of alternative splicing patterns in the human and mouse genomes. Hum Mol Genet, 2003. 12(11): p. 1313-20. https://doi.org/10.1093/hmg/ddg137
Tejedor, J.R. and J. Valcarcel, Gene regulation: Breaking the second genetic code. Nature, 2010. 465(7294): p. 45-6. https://doi.org/10.1038/465045a
Alberts, B., Molecular Biology of The cell. Fifth ed. 2008. 411-499.
Dekker, J., et al., Capturing chromosome conformation. Science, 2002. 295(5558): p. 1306-11. https://doi.org/10.1126/science.1067799
Queen, C. and D. Baltimore, Immunoglobulin gene transcription is activated by downstream sequence elements. Cell, 1983. 33(3): p. 741-8. https://doi.org/10.1016/0092-8674(83)90016-8
Raab, J.R. and R.T. Kamakaka, Insulators and promoters: closer than we think. Nat Rev Genet, 2010. 11(6): p. 439-46. https://doi.org/10.1038/nrg2765
Scherrer, K. and J. Jost, Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci, 2007. 126(2-3): p. 65-113. https://doi.org/10.1007/s12064-007-0012-x
Spilianakis, C.G., et al., Interchromosomal associations between alternatively expressed loci. Nature, 2005. 435(7042): p. 637-45. https://doi.org/10.1038/nature03574
Tsytsykova, A.V., et al., Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers. Proc Natl Acad Sci U S A, 2007. 104(43): p. 16850-5. https://doi.org/10.1073/pnas.0708210104
Liu, Z. and W.T. Garrard, Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3' boundary sequence spanning 46 kilobases. Mol Cell Biol, 2005. 25(8): p. 3220-31. https://doi.org/10.1128/MCB.25.8.3220-3231.2005
Lan, F. and Y. Shi, Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci, 2009. 52(4): p. 311-22. https://doi.org/10.1007/s11427-009-0054-z
Burgess-Beusse, B., et al., The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci U S A, 2002. 99 Suppl 4: p. 16433-7. https://doi.org/10.1073/pnas.162342499
Carthew, R.W., Molecular biology. A new RNA dimension to genome control. Science, 2006. 313(5785): p. 305-6. https://doi.org/10.1126/science.1131186
Sontheimer, E.J., Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol, 2005. 6(2): p. 127-38. https://doi.org/10.1038/nrm1568
Lau, N.C., et al., Characterization of the piRNA complex from rat testes. Science, 2006. 313(5785): p. 363-7. https://doi.org/10.1126/science.1130164
Aravin, A.A., G.J. Hannon, and J. Brennecke, The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 2007. 318(5851): p. 761-4. https://doi.org/10.1126/science.1146484
Martianov, I., et al., Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature, 2007. 445(7128): p. 666-70. https://doi.org/10.1038/nature05519
He, Y., et al., The antisense transcriptomes of human cells. Science, 2008. 322(5909): p. 1855-7. https://doi.org/10.1126/science.1163853
Carninci, P., Molecular biology: The long and short of RNAs. Nature, 2009. 457(7232): p. 974-5. https://doi.org/10.1038/457974b
Wyers, F., et al., Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell, 2005. 121(5): p. 725-37. https://doi.org/10.1016/j.cell.2005.04.030
Preker, P., et al., RNA exosome depletion reveals transcription upstream of active human promoters. Science, 2008. 322(5909): p. 1851-4. https://doi.org/10.1126/science.1164096
Seila, A.C., et al., Divergent transcription from active promoters. Science, 2008. 322(5909): p. 1849-51. https://doi.org/10.1126/science.1162253
Black, D.L., Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem, 2003. 72: p. 291-336. https://doi.org/10.1146/annurev.biochem.72.121801.161720
Parra, G., et al., Tandem chimerism as a means to increase protein complexity in the human genome. Genome Res, 2006. 16(1): p. 37-44. https://doi.org/10.1101/gr.4145906
Smalheiser, N.R., EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol, 2003. 4(7): p. 403. https://doi.org/10.1186/gb-2003-4-7-403
Lolle, S.J., et al., Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature, 2005. 434(7032): p. 505-9. https://doi.org/10.1038/nature03380
Rassoulzadegan, M., et al., RNA-mediated nonmendelian inheritance of an epigenetic change in the mouse. Nature, 2006. 441(7092): p. 469-74. https://doi.org/10.1038/nature04674
Frantz, S.A., et al., Exon repetition in mRNA. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5400-5. https://doi.org/10.1073/pnas.96.10.5400
Caudevilla, C., et al., Natural trans-splicing in carnitine octanoyltransferase pre-mRNAs in rat liver. Proc Natl Acad Sci U S A, 1998. 95(21): p. 12185-90. https://doi.org/10.1073/pnas.95.21.12185
Dixon, R.J., et al., A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. Nucleic Acids Res, 2005. 33(18): p. 5904-13. https://doi.org/10.1093/nar/gki893
Gerstein, M.B., et al., What is a gene, post-ENCODE? History and updated definition. Genome Res, 2007. 17(6): p. 669-81. https://doi.org/10.1101/gr.6339607