Abstract
Purpose: To establish if there is a relationship between leptin levels and bone mineral density in obese patients belonging to an obesity program of an endocrinology service at a University Hospital. Methodology: A cross-sectional study was carried out between June of 2012 and June of 2014, in patients among 18-75 years old with body mass index ≥30 kg/m2. Anthropometric and paraclinical parameters were assessed (leptin levels and bone densitometry). A descriptive analysis of the information was performed and correlation between variables was estimated through the Pearson correlation coefficient. The statistical analysis was performed in STATA version 12. Results: 90 patients were included with an average age of 48 years old, mean leptin levels of 45 ng/ml and body mass index 36.8 Kg/m2. The coefficients of Pearson correlation between leptin and bone mineral density were for lumbar column -0.03, femoral neck -0.18 and total hip -0.25. An Anova test was applied for degree of obesity and bone mineral density in lumbar column, femoral neck and total hip, being significant for the last two, (p = 0.01) and (p = 0.0009). Multiple linear regression model found statistically significant associations between bone density total hip and leptin (coefficient of -0.002, (p = 0.017); it was not found associations between bone density of lumbar column and femoral neck with the levels of leptin. Conclusion: Our study found a weak relationship between leptin levels in obese patients and its effect on the mineral bone density ore in total hip adjusted by degree of obesity.
References
Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191-200. https://doi.org/10.5114/aoms.2013.33181
Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:71. https://doi.org/10.3389/fendo.2013.00071
Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf). 2006;64(4):355-65. https://doi.org/10.1111/j.1365-2265.2006.02474.x
Iwaniec UT, Dube MG, Boghossian S, Song H, Helferich WG, Turner RT, et al. Body mass influences cortical bone mass independent of leptin signaling. Bone. 2009;44(3):404-12. https://doi.org/10.1016/j.bone.2008.10.058
Frigolet VzVMaE. Señalización de la leptina. REB. 2006;25(2):50-4.
Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. 2007;2:31-56. https://doi.org/10.1146/annurev.pathol.2.010506.091859
Guadalupe SnBtJ. La leptina en la carcinogénesis mamaria. Vías de señalización Revista QuímicaViva. 2012;2:91-111.
Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS. Leptin in human physiology and therapeutics. Front Neuroendocrinol. 2010;31(3):377-93. https://doi.org/10.1016/j.yfrne.2010.06.002
Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301(4):E567-84. https://doi.org/10.1152/ajpendo.00315.2011
Legiran S, Brandi ML. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity. Clin Cases Miner Bone Metab. 2012;9(3):145-9.
Palma J-A, Iriarte J. Regulación del apetito: bases neuroendocrinas e implicaciones clínicas. Medicina Clínica. 2012;139(2):70-5. https://doi.org/10.1016/j.medcli.2011.11.024
Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;13 Suppl 2:30-9. https://doi.org/10.1111/j.1467-789X.2012.01035.x
Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res. 2008;23(1):17-29. https://doi.org/10.1359/jbmr.070813
Zaidi M, Buettner C, Sun L, Iqbal J. Minireview: The link between fat and bone: does mass beget mass? Endocrinology. 2012;153(5):2070-5. https://doi.org/10.1210/en.2012-1022
Marie PJ. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys. 2008;473(2):98-105. https://doi.org/10.1016/j.abb.2008.02.030
Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie. 2012;94(10):2089-96. ttps://doi.org/10.1016/j.biochi.2012.04.015
Scheller EL, Song J, Dishowitz MI, Hankenson KD, Krebsbach PH. A potential role for the myeloid lineage in leptin-regulated bone metabolism. Horm Metab Res. 2012;44(1):1-5. https://doi.org/10.1055/s-0031-1297971
Toulis KA, Anastasilakis AD, Polyzos SA, Makras P. Targeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis. Hormones (Athens). 2011;10(3):174-95. https://doi.org/10.14310/horm.2002.1308
Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976-89. https://doi.org/10.1016/j.cell.2009.06.051
Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305-17. https://doi.org/10.1016/S0092-8674(02)01049-8
Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197-207. https://doi.org/10.1016/S0092-8674(00)81558-5
Fujita Y, Watanabe K, Maki K. Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J Musculoskelet Neuronal Interact. 2012;12(2):84-94.
Filip R, Raszewski G. Bone mineral density and bone turnover in relation to serum leptin, alpha-ketoglutarate and sex steroids in overweight and obese postmenopausal women. Clin Endocrinol (Oxf). 2009;70(2):214-20. https://doi.org/10.1111/j.1365-2265.2008.03313.x
Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res. 2002;17(10):1896-903. https://doi.org/10.1359/jbmr.2002.17.10.1896
Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, et al. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703-13. https://doi.org/10.1210/jc.2011-0047
Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. J Clin Endocrinol Metab. 2014;99(9):3290-7. https://doi.org/10.1210/jc.2013-3200
Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M, et al. Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab. 2001;86(11):5273-6. https://doi.org/10.1210/jcem.86.11.8020
M. KH. Physiology and Pathology of the Female Reproductive Axis. Williams Textbook of Endocrinology, 12th Edition. 1: Saunders; 2011. p. 581 https://doi.org/10.1016/B978-1-4377-0324-5.00017-1
Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26(3):496-502. https://doi.org/10.1002/jbmr.235
Holecki M, Chudek J, Titz-Bober M, Więcek A, Zahorska-Markiewicz B, Duława J. Changes of bone mineral density in obese perimenopausal women during 5-year follow-up. Pol Arch Med Wewn. 2012;122(4):139-47 https://doi.org/10.20452/pamw.1175