Temperature of ocular surface through infrared thermography imaging in a healthy adult population. 
PDF (Español (España))

Keywords

Termografía
Oftalmología
Temperatura
Temperatura corporal
Fenómenos fisiológicos oculares Thermography
Ophthalmology
Temperature
Body temperature
Ocular physiological phenomena

How to Cite

Belalcázar, S., Plata, M. C., Roca Contreras, D., Cortés, D. A., Rosenstiehl, S. ., Rodríguez, A. C., Perdomo, O. J. ., Carvajal, C. R., & Rodríguez, F. J. . (2019). Temperature of ocular surface through infrared thermography imaging in a healthy adult population. . Revista Médica Sanitas, 22(4), 147-155. Retrieved from //revistas.unisanitas.edu.co/index.php/rms/article/view/485

Abstract

Purpose: To describe the temperature of ocular surface by infrared thermography imaging in a healthy adult population. Methods: A cross-sectional study was carried out. Subjects older than 18 years considered visually and systemically healthy were chosen, after completing medical record and ophthalmological evaluation. The ambient temperature, humidity and luminosity were monitorized. The images were taken with the OPTRIS PI-450 camera. The temperature was analyzed at 7 points of the ocular surface. Data analysis was performed through the IBM SPSS Statistics 21 program. Results: 43 eyes were included (22 subjects) that met the inclusion criteria, 74% were women. The median age of the subjects studied was 31 years (Q1 28,00 – Q3 36.00 years). Median body temperature was 36.40 °C (Q1 36,30°C – Q3 36.50°C). The central cornea had a median temperature of 33.78 °C (Q1 33,17ºC – Q3 34.68 ºC), the superior limbus had a median temperature of 34,22°C (Q1 33,48ºC – Q3 34.66ºC), the inferior limbus had a median temperature of 33.88°C (Q1 33,24 ºC – Q3 34.92ºC), the nasal limbus had a median temperature of 34.42° C (Q1 33,90ºC – Q3 35.18ºC), the temporal limbus had a median temperature of 33.90 °C (Q1 33,54 ºC – Q3 35.53 ºC), the nasal conjunctiva had a median temperature of 35.10 °C (Q1 34,54 °C– Q3 35.53°C), the temporal conjunctiva had a median temperature of 34,50 °C (Q1 33,66 °C – Q3 35.22°C). Conclusions: Infrared Thermography Imaging can be a reproductible measurement method of the Ocular Surface Temperature, and it could get to be a non invasive diagnostic tool for ocular pathology. This study showed that OST at the center of the cornea is lower compared to nasal and temporal conjunctival areas. OST is 2 °C lower than the body temperature. Further analytic comparative studies are required to establish the usefulness of the IT as a diagnostic or screening tool in ocular pathology.

PDF (Español (España))

References

Menaka M, Manoharan U, Sharath D, Bhattacharjee P, Venkatraman B. Application of Thermal Imaging in Opthalmology. 2017;10-2. https://doi.org/10.21611/qirt.2017.012

Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012;33(3):32-46. https://doi.org/10.1088/0967-3334/33/3/R33

Acharya R, Yun WL, Ng EY, Yu W, Suri JS. Imaging systems of human eye: a review. Journal of medical systems. 32(4), 2008:301-315. https://doi.org/10.1007/s10916-008-9135-y

Purslow C, Wolffsohn JS. Ocular Surface Temperature. Eye Contact Lens Sci Clin Pract 2005;31(3):117-23. https://doi.org/10.1097/01.ICL.0000141921.80061.17

Versura P, Giannaccare G, Fresina M, Campos EC. Subjective Discomfort Symptoms Are Related to Low Corneal Temperature in Patients with Evaporative Dry Eye. Cornea. 2015;34(9):1079-85. https://doi.org/10.1097/ICO.0000000000000512

Azharuddin M, Bera SK, Datta H, Dasgupta AK. Thermal fluctuation based study of aqueous deficient dry eyes by non-invasive thermal imaging. Exp Eye Res. 2014; 120:97-102. https://doi.org/10.1016/j.exer.2014.01.007

Mencucci R, Mazzotta C, Corvi A, Terracciano L, Rechichi M, Matteoli S. In vivo thermographic analysis of the corneal surface in keratoconic patients undergoing riboflavin-UV-A accelerated cross-linking. Cornea. 2015;34(3):323-7. https://doi.org/10.1097/ICO.0000000000000324

Sniegowski MC, Erlanger M, Olson J. Thermal imaging of corneal transplant rejection. Int Ophthalmol. 2017;1-5 https://doi.org/10.1007/s10792-017-0731-z

Nammalwar P, Narasimhan V, Kannan T. Non-invasive Glaucoma Screening Using Ocular Thermal Image Classification. 2017;25(3):227-36. https://doi.org/10.20532/cit.2017.1003412

Fabiani C, Li Voti R, Rusciano D, Mutolo MG, Pescosolido N. Relationship between Corneal Temperature and Intraocular Pressure in Healthy Individuals: A Clinical Thermographic Analysis. J Ophthalmol. 2016;2016. https://doi.org/10.1155/2016/3076031

Shih SR, Li HY, Hsiao YL, Chang TC. The application of temperature measurement of the eyes by digital infrared thermal imaging as a prognostic factor of methylprednisolone pulse therapy for Graves' ophthalmopathy. Acta Ophthalmol. 2010;88(5):154-9. https://doi.org/10.1111/j.1755-3768.2010.01941.x

Di Maria C, Allen J, Dickinson J, Neoh C, Perros P. Novel Thermal Imaging Analysis Technique for Detecting Inflammation in Thyroid Eye Disease. J Clin Endocrinol Metab 2014;99(12):4600-6. https://doi.org/10.1210/jc.2014-1957

Sniegowski M, Erlanger M, Velez-Montoya R, Olson JL. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients. Clin Ophthalmol. 2015;9:461-6. https://doi.org/10.2147/OPTH.S69670

Auker CR, Parver LM, T. Doyle, and D. O. Carpenter, "Choroidal blood flow. I. Ocular tissue temperature as a measure of flow," Archives ofOphthalmology, vol. 100, no.8,pp. 1323-1326, 1982. https://doi.org/10.1001/archopht.1982.01030040301020

Mapstone R: Determinants of corneal temperature. Br J Ophthalmol 1968;52:729-741. https://doi.org/10.1136/bjo.52.10.729

Rysä P, Sarvaranta J: Corneal temperature in man and rabbit. Observations made using an infrared camera and a cold chamber. Acta Ophthalmol 1974;52:810-816. https://doi.org/10.1111/j.1755-3768.1974.tb01117.x

Sodi A, Matteoli S, Giacomelli G, Finocchio L, Corvi A, Menchini U. Ocular Surface Temperature in Age-Related Macular Degeneration. Journal of Ophthalmology 2014-281010 https://doi.org/10.1155/2014/281010

Schwartz B: Environmental temperature and the ocular temperature gradient. Arch Ophthalmol 1965;74:237-243. https://doi.org/10.1001/archopht.1965.00970040239022

Freeman RD, Fatt I: Environmental influences on ocular temperature. Invest Ophthalmol 1973;12:596-602.

Aliò J, Padron M: Influence of age on the temperature of the anterior segment of the eye Measurements by infrared thermometry. Ophthalmic Res 1982;14:153-159. https://doi.org/10.1159/000265187

Huber A: Temperaturmessung am Auge. Ophthalmologica 1960;139:351-357. https://doi.org/10.1159/000303721

Mapstone R: Ocular thermography. Br J Ophthalmol 1970;54:751-754. https://doi.org/10.1136/bjo.54.11.751

Efron N, Brennan NA, Hore J, Rieper K: Temperature of the hyperemic bulbar conjunctiva. Curr Eye Res 1988;7:615-618. https://doi.org/10.3109/02713688809031818

Fujishima H, Toda I, Yamada M, Sato N, Tsubota K: Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry. Br J Ophthalmol 1996;80:29-32. https://doi.org/10.1136/bjo.80.1.29

Betney S, Morgan PB, Doyle SJ, Efron N: Corneal temperature changes during photorefractive keratectomy. Cornea 1997;16:158-161. https://doi.org/10.1097/00003226-199703000-00007

Downloads

Download data is not yet available.