Abstract
Introduction: Human Immunodeficiency Virus (HIV) remains one of the major global health challenges. Although significant progress has been made in treatment over recent decades, the search for new therapeutic strategies has led to the exploration of monoclonal antibodies (mAbs)—engineered proteins designed to recognize specific antigenic epitopes—with potential to enhance the immune response against HIV. Methods: A systematic search was conducted in the PubMed database, including articles in English and Spanish using the MeSH terms: “HIV”, “Monoclonal Antibodies”, and “CD4 Lymphocyte”. After screening titles and abstracts, 21 studies were selected for qualitative synthesis. Results: The selected studies report significant efficacy of neutralizing mAbs against various HIV strains, particularly those derived from CD4 T cell membrane fragments. These antibodies not only block viral entry but also promote macrophage activation, aiding in the elimination of infected cells. Additionally, the role of CCR5 coreceptor inhibitors is highlighted as key biomarkers in disease progression. Various mechanisms of action of mAbs are described, targeting viral entry and replication in host target cells. Conclusions: Monoclonal antibodies represent a promising therapeutic alternative in the treatment of HIV, offering potential advantages in specificity, efficacy, and safety. However, further high-quality, low-bias studies are required to validate these benefits and assess their impact on clinically relevant outcomes.
References
Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primer [Internet]. 1 de octubre de 2015 [citado 7 de diciembre de 2021];1(1):1-22. https://doi.org/10.1038/nrdp.2015.35
Posner J, Barrington P, Brier T, Datta-Mannan A. Monoclonal Antibodies: Past, Present and Future. En: Barrett JE, Page CP, Michel MC, editores. Concepts and Principles of Pharmacology: 100 Years of the Handbook of Experimental Pharmacology [Internet]. Cham: Springer International Publishing; 2019 [citado 7 de diciembre de 2021]. p. 81-141. (Handbook of Experimental Pharmacology). https:// doi.org/10.1007/164_2019_323
Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect [Internet]. 20 de diciembre de 2019 [citado 7 de diciembre de 2021];7(6):e00535. https://doi.org/10.1002/prp2.535
Zhang G, Campbell GR, Zhang Q, Maule E, Hanna J, Gao W, et al. CD4+ T Cell-Mimicking Nanoparticles Broadly Neutralize HIV-1 and Suppress Viral Replication through Autophagy. mBio [Internet]. 15 de septiembre de 2020 [citado 12 de diciembre de 2021];11(5):e00903- 20. https://doi.org/10.1128/mBio.00903-20
Moody MA, Liao H-X, Alam SM, Scearce RM, Plonk MK, Kozink DM, et al. Anti-phospholipid human monoclonal antibodies inhibit CCR5- tropic HIV-1 and induce -chemokines. J Exp Med [Internet]. 12 de abril de 2010 [citado 12 de diciembre de 2021];207(4):763-76. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856026/
Berro R, Klasse PJ, Lascano D, Flegler A, Nagashima KA, Sanders RW, et al. Multiple CCR5 Conformations on the Cell Surface Are Used Differentially by Human Immunodeficiency Viruses Resistant or Sensitive to CCR5 Inhibitors. J Virol [Internet]. agosto de 2011 [citado 11 de diciembre de 2021];85(16):8227-40. https://doi.org/10.1128/JVI.00767-11
Yang X, Jiao Y, Wang R, Ji Y, Zhang H, Zhang Y, et al. High CCR5 Density on Central Memory CD4+ T Cells in Acute HIV-1 Infection Is Mostly Associated with Rapid Disease Progression. PLOS ONE [Internet]. 21 de noviembre de 2012 [citado 12 de diciembre de 2021];7(11):e49526. https://doi.org/10.1371/journal.pone.0049526
Blockade of the PD-1 axis alone is not sufficient to activate HIV-1 virion production from CD4+ T cells of individuals on suppressive ART. PLOS ONE [Internet]. 25 de enero de 2019 [citado 12 de diciembre de 2021];14(1):e0211112, https://doi.org/10.1371/journal.pone.0211112
Sanders-Beer BE, Eschricht M, Seifried J, Hirsch VM, Allan JS, Norley S. Characterization of a monoclonal anti-capsid antibody that cross-reacts with three major primate lentivirus lineages. Virology [Internet]. 20 de enero de 2012 [citado 12 de diciembre de 2021];422(2):402-12. https://doi.org/10.1016/j.virol.2011.11.003
Bolton DL, Pegu A, Wang K, McGinnis K, Nason M, Foulds K, et al. Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol [Internet]. 15 de enero de 2016 [citado 12 de diciembre de 2021];90(3):1321-32.
Permanyer M, Ballana E, Badia R, Pauls E, Clotet B, Esté JA. Trans-infection but Not Infection from within Endosomal Compartments after Cell-to-cell HIV-1 Transfer to CD4+ T Cells. J Biol Chem [Internet]. 14 de septiembre de 2012 [citado 12 de diciembre de 2021];287(38):32017-26. https://doi.org/10.1074/jbc.M112.343293
Ferrari G, Pollara J, Kozink D, Harms T, Drinker M, Freel S, et al. An HIV-1 gp120 Envelope Human Monoclonal Antibody That Recognizes
a C1 Conformational Epitope Mediates Potent Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity and Defines a Common ADCC Epitope in Human HIV-1 Serum. J Virol [Internet]. julio de 2011 [citado 12 de diciembre de 2021];85(14):7029-36. https://doi. org/10.1128/JVI.00171-11
Flamar A-L, Xue Y, Zurawski SM, Montes M, King B, Sloan L, et al. Targeting concatenated HIV antigens to human CD40 expands a broad repertoire of multifunctional CD4+ and CD8+ T cells. AIDS Lond Engl [Internet]. 24 de agosto de 2013 [citado 12 de diciembre de 2021];27(13):10.1097/QAD.0b013e3283624305. https://doi.org/10.1097/QAD.0b013e3283624305
Relationship between intact HIV-1 proviruses in circulating CD4+ T cells and rebound viruses emerging during treatment interruption | PNAS [Internet]. [citado 12 de diciembre de 2021]. Disponible en: https://www.pnas.org/content/115/48/E11341.long
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, et al. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis [Internet]. 2016 [citado 11 de diciembre de 2021];69(3):236-43. https://doi.org/10.7883/yoken.JJID.2015.310
Ibalizumab, a Novel Monoclonal Antibody for the Management of Multidrug-Resistant HIV-1 Infection [Internet]. [citado 12 de diciembre de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6535568 /
Rasmussen TA, McMahon J, Chang JJ, Symons J, Roche M, Dantanarayana A, et al. Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome. AIDS Lond Engl [Internet]. 24 de agosto de 2017 [citado 10 de diciembre de 2021];31(13):1839-45. https://doi.org/10.1097/QAD.0000000000001540
Wang C-C, Thanh C, Gibson EA, Ball-Burack M, Hogan LE, Descours B, et al. Transient loss of detectable HIV-1 RNA following brentuximab vedotin anti-CD30 therapy for Hodgkin lymphoma. Blood Adv [Internet]. 7 de diciembre de 2018 [citado 11 de diciembre de 2021];2(23):3479-82. https://doi.org/10.1182/bloodadvances.2018024364
Passive transfer of neutralizing mAb KD-247 reduces plasma v... : AIDS [Internet]. [citado 11 de diciembre de 2021]. Disponible en: https://journals.lww.com/aidsonline/Fulltext/2015/02200/Passive_transfer_of_neutralizing_mAb_KD_247.7.aspx
Tu T, Zhan J, Mou D, Li W, Su B, Zhang T, et al. In vitro inhibition of HIV-1 replication in autologous CD4+ T cells indicates viral containment by multifactorial mechanisms. Virol Sin [Internet]. 15 de septiembre de 2017 [citado 12 de diciembre de 2021];32(6):485-94. https:// doi.org/10.1007/s12250-017-3992-9
Euler Z, Alter G. Exploring the Potential of Monoclonal Antibody Therapeutics for HIV-1 Eradication. AIDS Res Hum Retroviruses [Internet].
de enero de 2015 [citado 11 de diciembre de 2021];31(1):13-24. https://doi.org/10.1089/aid.2014.0235