Resumen
En las últimas cinco décadas se ha evidenciado un incremento alarmante en las tasas de prevalencia de las enfermedades alérgicas en el humano, tanto en países desarrollados como en vías de desarrollo, donde gran parte de la población afectada está representada por niños y jóvenes, en quienes se ha observado una mayor tendencia al aumento en las últimas dos décadas. Entre los múltiples factores e hipótesis planteados para explicar las diferencias geográficas observadas en las prevalencias de las enfermedades alérgicas y su incremento mundial, se encuentra la hipótesis de la dieta y enmarcada en esta, la hipótesis de las grasas, la cual señala que el consumo excesivo de ácidos grasos omega-6 y bajos de omega-3 principalmente en dietas occidentales y como resultado de intervenciones en prevención del riesgo cardiovascular, influiría en el desarrollo de las alergias y en el incremento de su prevalencia. La evidencia epidemiológica sugiere un papel modulador de ácidos grasos particulares de la dieta y de varios de sus metabolitos sobre el estado inflamatorio de tipo alérgico en el humano. El objetivo de la presente revisión será describir los efectos de algunos grupos de ácidos grasos de la dieta y de varios de sus metabolitos en la función de las células que participan en la respuesta alérgica.
Citas
Lötvall J, Pawankar R, Wallace DV, Akdis CA, Rosenwasser LJ, Weber RW, et al. We call for iCAALL: International Collaboration in Asthma, Allergy and Immunology. J Allergy Clin Immunol. 2012;129(4):904-5. https://doi.org/10.1016/j.jaci.2012.02.009
Ruby Pawankar GWC, Stephen T. Holgate, Richard F. Lockey. WAO-White Book on Allergy: World Allergy Organization; 2011.
Asher MI, Montefort S, Björkstén B, Lai CKW, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet. 2006;368(9537):733-43. https://doi.org/10.1016/S0140-6736(06)69283-0
Beasley R. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The Lancet. 1998;351(9111):1225-32. https://doi.org/10.1016/S0140-6736(97)07302-9
Dennis RJ, Caraballo L, García E, Rojas MX, Rondon MA, Pérez A, et al. Prevalence of asthma and other allergic conditions in Colombia 2009- 2010: a cross-sectional study. BMC Pulm Med. 2012;12:17. https://doi.org/10.1186/1471-2466-12-17
Rodolfo Dennis LC, Elizabeth García, Andrés Caballero, Gustavo Aristizabal, Hernán Córdoba, María N. Rodríguez, María X. Rojas, Carlos Orduz, Ricardo Cardona, Arcelio Blanco, Eduardo Egea, Carlos Verbel, Luz L. Cala. Asthma and other allergic conditions in Colombia- a study in 6 cities. Annals of Allergy Asthma & Immunology. 2004;93:568-74. https://doi.org/10.1016/S1081-1206(10)61265-3
Luis Caraballo AC, Juan Mendoza. Prevalence of asthma in a tropical city of Colombia. Annals of Allergy. 1992;68(6):525-9.
von Mutius E. Influences in allergy: epidemiology and the environment. J Allergy Clin Immunol. 2004;113(3):373-9; quiz 80. https://doi.org/10.1016/j.jaci.2003.12.040
Tari Haahtela SH, Ruby Pawankar, Cezmi A Akdis, Suwat Benjaponpitak, Luis Caraballo, Jeffrey Demain, Jay Portnoy, Leena von Hertzen, and WAO Special Committee on Climate Change and Biodiversity. The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organization Journal. 2013;6(3):1-18. https://doi.org/10.1186/1939-4551-6-3
Isolauri E, Huurre A, Salminen S, Impivaara O. The allergy epidemic extends beyond the past few decades. Clin Exp Allergy. 2004;34(7):1007-10. https://doi.org/10.1111/j.1365-2222.2004.01999.x
Prescott SL. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol. 2013;131(1):23-30. https://doi.org/10.1016/j.jaci.2012.11.019
West CE, D'Vaz N, Prescott SL. Dietary immunomodulatory factors in the development of immune tolerance. Curr Allergy Asthma Rep. 2011;11(4):325-33. https://doi.org/10.1007/s11882-011-0200-0
Devereux G, Seaton A. Diet as a risk factor for atopy and asthma. J Allergy Clin Immunol. 2005;115(6):1109-17; quiz 18. https://doi.org/10.1016/j.jaci.2004.12.1139
P. Ellwood MIA, B. BjÖrkstén, M. Burr, N. Pearce, C.F Robertson. Diet and asthma, allergic rhinoconjunctivitis and atopic eczema symptom prevalence: an ecological analysis of the International Study of Asthma and Allergies in Childhood (ISAAC) data. Eur Respir J 2001;17:436-43. https://doi.org/10.1183/09031936.01.17304360
Castro-Rodríguez JA, García-Marcos L, Alfonseda Rojas JD, Valverde-Molina J, Sánchez-Solis M. Mediterranean diet as a protective factor for wheezing in preschool children. J Pediatr. 2008;152(6):823-8, 8 e1-2. https://doi.org/10.1016/j.jpeds.2008.01.003
Hypponen E, Sovio U, Wjst M, Patel S, Pekkanen J, Hartikainen AL, et al. Infant vitamin d supplementation and allergic conditions in adulthood: northern Finland birth cohort 1966. Ann N Y Acad Sci. 2004;1037:84-95. https://doi.org/10.1196/annals.1337.013
Black PN, Sharpe S. Dietary fat and asthma: is there a connection? European Respiratory Journal. 1997;10(1):6-12. https://doi.org/10.1183/09031936.97.10010006
Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids. 2008;79(3-5):101-8. https://doi.org/10.1016/j.plefa.2008.09.016
Fritsche K. Fatty acids as modulators of the immune response. Annu Rev Nutr. 2006;26:45-73. https://doi.org/10.1146/annurev.nutr.25.050304.092610
Lumia M, Luukkainen P, Tapanainen H, Kaila M, Erkkola M, Uusitalo L, et al. Dietary fatty acid composition during pregnancy and the risk of asthma in the offspring. Pediatr Allergy Immunol. 2011;22(8):827-35. https://doi.org/10.1111/j.1399-3038.2011.01202.x
Miyake Y, Tanaka K, Okubo H, Sasaki S, Arakawa M. Maternal fat intake during pregnancy and wheeze and eczema in Japanese infants: the Kyushu Okinawa Maternal and Child Health Study. Ann Epidemiol. 2013;23(11):674-80. https://doi.org/10.1016/j.annepidem.2013.08.004
Miyake Y, Sasaki S, Tanaka K, Ohfuji S, Hirota Y. Maternal fat consumption during pregnancy and risk of wheeze and eczema in Japanese infants aged 16-24 months: the Osaka Maternal and Child Health Study. Thorax. 2009;64(9):815-21. https://doi.org/10.1136/thx.2009.115931
Mihrshahi S, Peat JK, Marks GB, Mellis CM, Tovey ER, Webb K, et al. Eighteen-month outcomes of house dust mite avoidance and dietary fatty acid modification in the childhood asthma prevention study (CAPS). Journal of Allergy and Clinical Immunology. 2003;111(1):162-8. https://doi.org/10.1067/mai.2003.36
Jarvinen KM, Sicherer SH. Fish Consumption During the First Year of Life and Development of Allergic Diseases During Childhood. Pediatrics. 2007;120(Supplement):S109-S. https://doi.org/10.1542/peds.2007-0846M
Sjurdur F Olsen MLØ, Jannie Dalby Salvig, Lotte Maxild Mortensen, Dorte Rytter, Niels J Secher,Tine Brink Henriksen. Fish oil intake compared with olive oil intake in late pregnancy and asthma in the offspring: 16 y of registry-based follow-up from a randomized controlled trial. The American Journal of Clinical Nutrition. 2008;88:167-75. https://doi.org/10.1093/ajcn/88.1.167
Wijga AH, van Houwelingen AC, Kerkhof M, Tabak C, de Jongste JC, Gerritsen J, et al. Breast milk fatty acids and allergic disease in preschool children: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Allergy Clin Immunol. 2006;117(2):440-7. https://doi.org/10.1016/j.jaci.2005.10.022
Hodge L, Salome CM, Hughes JM, Liu-Brennan D, Rimmer J, Allman M, et al. Effect of dietary intake of omega-3 and omega-6 fatty acids on severity of asthma in children. European Respiratory Journal. 1998;11(2):361-5. https://doi.org/10.1183/09031936.98.11020361
R. M. Stoney RKW, C. S. Hosking, D. J. Hill, M. J. Abramson, F. C. K. Thien. Maternal breast milk long-chain n-3 fatty acids are associated with increased risk of atopy in breastfed infants. Clin Exp Allergy. 2004;34:194-200. https://doi.org/10.1111/j.1365-2222.2004.01852.x
Miyake Y, Sasaki S, Arakawa M, Tanaka K, Murakami K, Ohya Y. Fatty acid intake and asthma symptoms in Japanese children: the Ryukyus Child Health Study. Clin Exp Allergy. 2008;38(10):1644-50. https://doi.org/10.1111/j.1365-2222.2008.03074.x
Anandan C, Nurmatov U, Sheikh A. Omega 3 and 6 oils for primary prevention of allergic disease: systematic review and meta-analysis. Allergy. 2009;64(6):840-8. https://doi.org/10.1111/j.1398-9995.2009.02042.x
Almqvist C, Garden F, Xuan W, Mihrshahi S, Leeder SR, Oddy W, et al. Omega-3 and omega-6 fatty acid exposure from early life does not affect atopy and asthma at age 5 years. J Allergy Clin Immunol. 2007;119(6):1438-44. https://doi.org/10.1016/j.jaci.2007.01.046
McKeever TM, Lewis SA, Cassano PA, Ocke M, Burney P, Britton J, et al. The relation between dietary intake of individual fatty acids, FEV1 and respiratory disease in Dutch adults. Thorax. 2008;63(3):208-14. https://doi.org/10.1136/thx.2007.090399
Buczynski MWD, D. S. Dennis, E. A. An integrated omics analysis of eicosanoid biology. J Lipid Res. 2009;50(6):1015-38. https://doi.org/10.1194/jlr.R900004-JLR200
Zeyda M, Saemann MD, Stuhlmeier KM, Mascher DG, Nowotny PN, Zlabinger GJ, et al. Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J Biol Chem. 2005;280(14):14293-301. https://doi.org/10.1074/jbc.M410000200
M. Damon CC, A. Crastes de Paulet, F.B. Michel, Ph. Godard. Arachidonic acid metabolism in alveolar macrophages. A comparison of cells from healthy subjects, allergic asthmatics, and chronic bronchitis patients. Prostaglandins 1987;34(2):291-309. https://doi.org/10.1016/0090-6980(87)90251-6
Grant GE, Gravel S, Guay J, Patel P, Mazer BD, Rokach J, et al. 5-oxo-ETE is a major oxidative stress-induced arachidonate metabolite in B lymphocytes. Free Radic Biol Med. 2011;50(10):1297-304. https://doi.org/10.1016/j.freeradbiomed.2011.02.010
Xue L, Barrow A, Pettipher R. Interaction between prostaglandin D and chemoattractant receptor-homologous molecule expressed on Th2 cells mediates cytokine production by Th2 lymphocytes in response to activated mast cells. Clin Exp Immunol. 2009;156(1):126-33. https://doi.org/10.1111/j.1365-2249.2008.03871.x
Gazi L, Gyles S, Rose J, Lees S, Allan C, Xue L, et al. ∆12-Prostaglandin D2 is a potent and selective CRTH2 receptor agonist and causes activation of human eosinophils and Th2 lymphocytes. Prostaglandins & Other Lipid Mediators. 2005;75(1-4):153-67. https://doi.org/10.1016/j.prostaglandins.2004.11.003
Yingying Chen Bp, Kerry S Campbell. Prostaglandin D2 suppresses human NK cell function via signaling through D prostanoid receptor. The Journal of Immunology. 2007;179:2766-73. https://doi.org/10.4049/jimmunol.179.5.2766
Hammad H, Kool M, Soullie T, Narumiya S, Trottein F, Hoogsteden HC, et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med. 2007;204(2):357-67. https://doi.org/10.1084/jem.20061196
Daniel S. Straus GP, Mei Li, John S. Welch, Mercedes Ricote, Chin-Hui Hsiang, Lei Lei Sengchanthalangsy, Gourisankar Ghosh, Christopher K. Glass. 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. PNAS. 2000;97(9):4844-9. https://doi.org/10.1073/pnas.97.9.4844
Farnesi-de-Assuncao TS, Alves CF, Carregaro V, de Oliveira JR, da Silva CA, Cheraim AB, et al. PPAR-gamma agonists, mainly 15d-PGJ(2), reduce eosinophil recruitment following allergen challenge. Cell Immunol. 2012;273(1):23-9. https://doi.org/10.1016/j.cellimm.2011.11.010
Lamoureux J, Stankova J, Rola-Pleszczynski M. Leukotriene D4 enhances immunoglobulin production in CD40-activated human B lymphocytes. J Allergy Clin Immunol. 2006;117(4):924-30. https://doi.org/10.1016/j.jaci.2005.12.1329
Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol. 2008;3:279-312. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151409
Basiouni S, Stockel K, Fuhrmann H, Schumann J. Polyunsaturated fatty acid supplements modulate mast cell membrane microdomain composition. Cell Immunol. 2012;275(1-2):42-6. https://doi.org/10.1016/j.cellimm.2012.03.004
T. Gueck AS, H. Fuhrmann. Consequences of eicosapentaenoic acid (n-3) and arachidonic acid (n-6) supplementation on mast cell mediators. J. Anim. Physiol. Anim. Nutr. 2004;88:259-65. https://doi.org/10.1111/j.1439-0396.2004.00480.x
Pisani LF, Lecchi C, Invernizzi G, Sartorelli P, Savoini G, Ceciliani F. In vitro modulatory effect of omega-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Vet Immunol Immunopathol. 2009;131(1-2):79-85. https://doi.org/10.1016/j.vetimm.2009.03.018
Wang H, Hao Q, Li QR, Yan XW, Ye S, Li YS, et al. Omega-3 polyunsaturated fatty acids affect lipopolysaccharide-induced maturation of dendritic cells through mitogen-activated protein kinases p38. Nutrition. 2007;23(6):474-82. https://doi.org/10.1016/j.nut.2007.04.002
Kong W, Yen JH, Vassiliou E, Adhikary S, Toscano MG, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Health Dis. 2010;9:12. https://doi.org/10.1186/1476-511X-9-12
Mickleborough TD, Tecklenburg SL, Montgomery GS, Lindley MR. Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells. Clin Nutr. 2009;28(1):71-7. https://doi.org/10.1016/j.clnu.2008.10.012
Calder PC. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):327-35. https://doi.org/10.1016/j.plefa.2007.10.015
Weise C, Hilt K, Milovanovic M, Ernst D, Ruhl R, Worm M. Inhibition of IgE production by docosahexaenoic acid is mediated by direct interference with STAT6 and NFkappaB pathway in human B cells. J Nutr Biochem. 2011;22(3):269-75. https://doi.org/10.1016/j.jnutbio.2010.02.004
Attakpa E, Hichami A, Simonin AM, Sanson EG, Dramane KL, Khan NA. Docosahexaenoic acid modulates the expression of T-bet and GATA-3 transcription factors, independently of PPARalpha, through suppression of MAP kinase activation. Biochimie. 2009;91(11-12):1359-65. https://doi.org/10.1016/j.biochi.2009.09.012
Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem. 2004;279(17):16971-9. https://doi.org/10.1074/jbc.M312990200
Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation
through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284(40):27384-92. https://doi.org/10.1074/jbc.M109.044065
Christine E. Loscher ED, Olive Leavy, Dermot Kelleher, Kingston H. G. Mills, Helen M. Roche. Conjugated linoleic acid suppresses NF-kappa B activation and IL-12 production in dendritic through ERK-mediated IL-10 Induction. The Journal of Immunology. 2005;175:4990-8. https://doi.org/10.4049/jimmunol.175.8.4990
Jaudszus A, Foerster M, Kroegel C, Wolf I, Jahreis G. Cis-9,trans-11-CLA exerts anti-inflammatory effects in human bronchial epithelial cells and eosinophils: comparison to trans-10,cis-12-CLA and to linoleic acid. Biochim Biophys Acta. 2005;1737(2-3):111-8. https://doi.org/10.1016/j.bbalip.2005.11.001
Y. Yu PHC, J.P. Vanden Heuvel. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages, evidence for a PPARy- dependent mechanism. Biochimica et Biophysica Acta. 2002;1581:89-99. https://doi.org/10.1016/S1388-1981(02)00126-9
Bruce D. Levy CBC, Birgitta Schmidt, Karsten Gronert, Charles N. Serhan. Lipid mediator class switching during acute inflammation: signals in resolution. Nature Immunology 2001;2(7):612-9. https://doi.org/10.1038/89759
M. Arita TO, Y.P. Sun, S. Elangovan, N. Chiang, C.N. Serhan. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and Chem23 to regulate inflammation. The Journal of Immunology. 2007;178:3912-7. https://doi.org/10.4049/jimmunol.178.6.3912
Campbell EL, Louis NA, Tomassetti SE, Canny GO, Arita M, Serhan CN, et al. Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. FASEB J. 2007;21(12):3162-70. https://doi.org/10.1096/fj.07-8473com
Ramon S, Gao F, Serhan CN, Phipps RP. Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells. J Immunol. 2012;189(2):1036-42. https://doi.org/10.4049/jimmunol.1103483
Levy BL KP, Gotlinger K. Protectin D1 is generated in asthma and dampens airways inflammation and hyperresponsiveness. J Immunol. 2007;178(496-502). https://doi.org/10.4049/jimmunol.178.1.496
Jun Miyata KF, Ryo Iwamoto, Yosuke Isobe, Kyoko Niimi, Rina Takamiya, Takahisa Takihara, Katsuyoshi Tomomatsu, Yusuke Suzuki, Tsuyoshi Oguma, Koichi Sayama, Hiroyuki Arai, Tomoko Betsuyaku, Makoto Arita, Koichiro Asano. Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma. J Allergy Clin Immunol. 2013;131:353-60. https://doi.org/10.1016/j.jaci.2012.07.048
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50(1):35-51. https://doi.org/10.1016/j.plipres.2010.07.005
Serhan CN, Dalli J, Karamnov S, Choi A, Park CK, Xu ZZ, et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012;26(4):1755-65. https://doi.org/10.1096/fj.11-201442
Tara M Nordgren AJH, Todd A Wyatt, Jill A Poole, Tricia D LeVan, D Roselyn Cerutis, Debra J Romberger. Maresin-1 reduces the pro-inflammatory response of bronchial epithelial cells to organic dust. Respiratory Research, BioMed Central. 2013;14(51):1-10. https://doi.org/10.1186/1465-9921-14-51
Groeger A CC, Cole MP. Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol. 2010;6:433-41. https://doi.org/10.1038/nchembio.367
Cipollina C, Di Vincenzo S, Gerbino S, Siena L, Gjomarkaj M, Pace E. Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. Biochim Biophys Acta. 2014. https://doi.org/10.1016/j.bbagen.2014.02.024
Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA, et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat Med. 2002;8(9):1018-23. https://doi.org/10.1038/nm748
Sesquile Ramon SB, Charles N. Serhan, Richard P. Phipps. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. Eur. J. Immunol. 2014;44:357-69. https://doi.org/10.1002/eji.201343316
Shiomi N, Watanabe K. Effects of oleic acid on murine macrophage dysfunction. Journal of Biomedical Science and Engineering. 2013;06(06):654-60. https://doi.org/10.4236/jbise.2013.66080
Anthony M. Mastrangelo TMJ, John W. Eaton. Oleic acid increases cell surface expression and activity of CD11b on human neutrophils. The Journal of Immunology. 1998;161:4268-75.
Jaudszus A, Jahreis G, Schlormann W, Fischer J, Kramer R, Degen C, et al. Vaccenic acid-mediated reduction in cytokine production is independent of c9,t11-CLA in human peripheral blood mononuclear cells. Biochim Biophys Acta. 2012;1821(10):1316-22. https://doi.org/10.1016/j.bbalip.2012.06.010
Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53(9):2002-13. https://doi.org/10.1194/jlr.D029546
Vucevic D, Melliou E, Vasilijic S, Gasic S, Ivanovski P, Chinou I, et al. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro. Int Immunopharmacol. 2007;7(9):1211-20. https://doi.org/10.1016/j.intimp.2007.05.005
Liu L, Li L, Min J, Wang J, Wu H, Zeng Y, et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol. 2012;277(1-2):66-73. https://doi.org/10.1016/j.cellimm.2012.05.011
Jin-Sun Park E-JL, Jae-Chul Lee, Won-Ki Kim, Hee-Sun Kim. Anti-inflammatory effects of short chain fatty acids in INF-y-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-kB and ERK signalling pathways. International Immunopharmacology. 2007;7:70-7. https://doi.org/10.1016/j.intimp.2006.08.015
Marco A.R. Vinolo HGR, Elaine Hatanaka, Fábio T. Sato, Sandra C. Sampaio, Rui Curi. Suppressive effects of short-chain fatty acids on production of proinflammatory mediators by neutrophils. Journal of Nutritional Biochemistry. 2011;22:849-55." https://doi.org/10.1016/j.jnutbio.2010.07.009