Rol de la telomerasa en la carcinogénesis y en el envejecimiento prematuro
PDF

Palabras clave

Telomerasa
Telómero
Envejecimiento
Homeostasis del Telómero
Tumor
Terapia Genética Telomerase
Telomere
Aging
Telomere Homeostasis
Tumor
Gene Therapy

Cómo citar

Orozco Flórez, V. M. ., & Caicedo Montaño, C. A. . (2016). Rol de la telomerasa en la carcinogénesis y en el envejecimiento prematuro. Revista Médica Sanitas, 19(1), 36-43. Recuperado a partir de //revistas.unisanitas.edu.co/index.php/rms/article/view/465

Resumen

La telomerasa es una enzima compuesta principalmente por una transcriptasa inversa y una plantilla de ARN que previene el acortamiento crítico de los extremos de los cromosomas. Este documento de revisión no-sistemática presenta y analiza la función biológica de la telomerasa en relación con la longitud de los telómeros, exponiendo su importancia para la homeostasis del contenido de los cromosomas, la capacidad regenerativa de las células madre, la regulación de la función mitocondrial, el desarrollo de tumores y otras patologías, y el envejecimiento prematuro. Se describió además otra vía para el mantenimiento de los la longitud de los telómeros, que también tiene una relación con la carcinogénesis. Se concluye que a pesar de los resultados obtenidos por distintos experimentos en animales que han mostrado opciones de posibles aplicaciones terapéuticas, aún es necesario indagar más acerca de los mecanismos moleculares que encierra la telomerasa.

PDF

Citas

D'Souza Y, Chu TW, Autexier C. A translocation-defective telomerase with low levels of activity and processivity stabilizes short telomeres and confers immortalization. Mol Biol Cell. 2013; 24(9): 1469-79. https://doi.org/10.1091/mbc.e12-12-0889

Aubert G, Lansdorp PM. Telomeres and Aging. Physiological Reviews, 2008; 88 (2), 557-579. https://doi.org/10.1152/physrev.00026.2007

John Hopkins Medicine, McKusick-Nathans Institute of Genetic Medicine, National Human Genome Research Institute (NHGRI). Online Mendelian Inheritance in Man (OMIM): An Online Catalog of Human Genes and Genetic Disorders. Fecha de consulta: 7 de febrero de 2016. Fecha de última actualización: 13 de febrero de 2016. Disponible en: http://www.omim.org/entry/187270?search=telomerase&highlight=telomerase

National Human Genome Research Institute (NHGRI). HUGO Gene Nomenclature Comittee. Fecha de consulta: 7 de febrero de 2016. Fecha de última actualización: 13 de febrero de 2016. Disponible en: http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:11727

Bernardes de Jesus B, Blasco M. Telomerase at the intersection of cancer and aging. Trends Genet. 2013; 29(9): 513-20. https://doi.org/10.1016/j.tig.2013.06.007

Gocha ARS, Nuovo G, Iwenofu OH, Groden J. Human sarcomas are mosaic for telomerase-dependent and telomerase- independent telomere maintenance mechanisms: Implications for telomere-based therapies. Am J Pathol. American Society for Investigative Pathology; 2013; 182(1): 41-8. Disponible en: https://doi.org/10.1016/j.ajpath.2012.10.001

Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009; 361:2353-2365. https://doi.org/10.1056/NEJMra0903373

Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011; 11: 161-176. https://doi.org/10.1038/nrc3025

Beier F, Foronda M, Martínez P, et al. Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of Dyskeratosis Congenita. Blood. 2012; 120: 2990-3000. https://doi.org/10.1182/blood-2012-03-418038

Leri A, et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 2003; 22: 131-139.

https://doi.org/10.1093/emboj/cdg013

Basel-Vanagaite L, et al. Expanding the clinical phenotype of autosomal dominant dyskeratosis congenita caused by TERT mutations. Haematologica. 2008; 93: 943-944. https://doi.org/10.3324/haematol.12317

Armanios M, et al. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am J Hum Genet. 2009; 85: 823-832. https://doi.org/10.1016/j.ajhg.2009.10.028

Hao LY, et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell. 2005; 123:1121-1131. https://doi.org/10.1016/j.cell.2005.11.020

Morrish TA, Greider CW. Short telomeres initiate telomere recombination in primary and tumor cells. PLoS Genet. 2009; 5: e1000357 https://doi.org/10.1371/journal.pgen.1000357

García-Morán GA, Gaitán AA, García-Cardona A, Clavijo-Grimaldi D, et al. Aspectos biomédicos de las fosfolipasas A2 en la especie humana. MedUNAB, 11, 1 (2008).

Sahin E, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011; 470: 359-365. https://doi.org/10.1038/nature09787

Hu J, Hwang SS, Liesa M, et al: Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell. 2012, 148: 651-663. https://doi.org/10.1016/j.cell.2011.12.028

Wu KJ, et al. Direct activation of TERT transcription by c-MYC. Nat Genet. 1999; 21: 220-224. https://doi.org/10.1038/6010

Hoffmeyer K, et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012; 336: 1549-1554. https://doi.org/10.1126/science.1218370

Greider CW. Molecular biology. Wnt regulates TERT--putting the horse before the cart. Science. 2012; 336: 1519-1520. https://doi.org/10.1126/science.1223785

Kyo S, Inoue M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene. 2002; 21: 688-697. https://doi.org/10.1038/sj.onc.1205163

González-Suárez E, et al. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet. 2000; 26:114-117. https://doi.org/10.1038/79089

Chin L, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999; 97: 527-538. https://doi.org/10.1016/S0092-8674(00)80762-X

Artandi SE, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers un mice. Nature. 2000; 406: 641-645. https://doi.org/10.1038/35020592

Chang S, et al. Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin Cancer Biol. 2001; 11: 227-239. https://doi.org/10.1006/scbi.2000.0374

González-Suárez E, et al. Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene. 2005; 24: 2256-2270. https://doi.org/10.1038/sj.onc.1208413

Tomas-Loba A, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 2008; 135: 609-622. https://doi.org/10.1016/j.cell.2008.09.034

Vera E, et al. Telomerase Reverse Transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS ONE. 2013; 8: e53760. https://doi.org/10.1371/journal.pone.0053760

Jaskelioff M, et al. Telomerase reactivation reverse tissue degeneration in aged telomerase-deficient mice. Nature. 2011; 469: 102-106. https://doi.org/10.1038/nature09603

Bernardes de Jesus B, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012; 4: 1-14." https://doi.org/10.1002/emmm.201200245

Descargas

Los datos de descargas todavía no están disponibles.